Vor. 17, 1931 MATHEMATICS: W.T. MACCREADIE 381

ON THE STABILITY OF THE MOTION OF A VISCOUS FLUID
By W. T. MAcCCREADIE

DEPARTMENT OF MATHEMATICS, BUCKNELL UNIVERSITY

Communicated April 24, 1931

A criterion for the stability of the steady motion of a viscous fluid be-
tween two parallel planes was established by Reynolds! as 200U, /u < 517,
where p = density, 2b = distance between the parallel planes, U, =.
mean velocity, and 4 = coefficient of viscosity. A much lower figure 167
was found by Sharpe? and later Orr® obtained the figure 117. In this
paper by expressing the small motion which is superimposed on the steady
motion (the Reynold’s method of solution) in the form of a Fourier’s
Series it i$ possible to show that the method employed by Reynolds gives
a result as small as that of Orr. Also by applying Calculus of Variations
the minimum value 116.8 is obtained.

- Equations of Motion.—Consider a viscous fluid of density p moving in
two dimensions with component velocities #, v, in directions x, y, re-
spectively. The dynamical equations of motion are ;

‘ P = _{ (Pxx + Puu) + (Pyx + p‘uﬂ)} (1)

o 0
be_t = - {a (ny + Pvu) + ’b;‘(Pyy + P?v)}’

where the stresses in the fluid are given by

. Ou b 0 ou .
Dex =P — 21 '5;: byy =P — » Dry = Dyx = (a: + a) (1a) .

- : u | w
We have also the equation of continuity — + —= 0.
o ox Oy
Steady Motion.—In the case of a fluid moving between two paxfailel
planes there exists a solution of these equations of the form

v=0u=-—22 "2y @)

where y = =) are the equations of the planes and b—: is constant. The

equations (1) for this case reduce to
op d*u

2 = ”dy . (22)
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The average velocity is

Lo}
therefore % _ _ 3ulU,/b% u = 3 Un(b? — y?) /b2
Ox 2
Turbulent Motion.—Consider a motion given by » = % + %' andv =
v + v’ where u, v are periodic functions of period / with regards to x and also
functions of y such that

1 1 1 1
fu’dx = fv'dx =0andu = fudx,5 = fvdx
0 0 0 [

To obtain the equations of turbulent motion substitute for %, v, in equa-
tions (1) and take the mean value of each member over a length / in the
x-direction. The resulting equations for the mean motion are

" d - — =, O ~ -
p% = - {'5; (pzx + puu + pu'u’) + 2 (b3 + pwv + pu'u')}
o d - — > _ o ®)
p&=—{a(f’xy+ﬁvu+m)’u’)+gy(pyy+pw+pv’v')}'

where p; = p;; + p'ii. Subtracting equations (3) from (1) we have the
equations of relative motion,

R {% [Bsn + oG’ + wm) + plu'u’ — @] +
o2 by + o(uv’ + u'v) + p(u's' — u v')]}‘
o ) oy (4)
vl {b_x [bay + oo’ + v'u) + p(v's’ — v'u")] +

r R - ~ -
a—y[pyy + p(w’ + v'v) + p('y" — v™)] }

To obtain the rate of change of the energy for the mean motion multiply
equation (3) by %, v and add. Putting 2E = p(u? + 2?) we obtain

oF [u(Pxx + ou'u)] + b [ (pys + pu’v')]l

o b ['D(ny + P’v’“,)] + = ay [v(Pyy + P'U’v,)] S



Vot. 17, 1931 MATHEMATICS: W.T. MACCREADIE 383

_ Ou _ Ou —— Ou - 5)
p"‘bx Pyxby u'u 'b;+uva—y

% - o +p '/—765 ﬁb{’.
nybx+pxyay r'U _b—x-l'vv -b—i’-

In a similar manner to obtain the equation for the rate of change of mean
energy of the relative motion multiply (4) by #’, v/, and add. Omitting
terms whose average value is zero and putting 2E’ = p(u'u’ + v0")
we have

> >
om Vo Wkt + e+ )

o  )O +
la [v'(pry + ov'u’) + bv[" (byy + o'v']
, ou' ou’ —bu T Ot
5?:::; dx +Pyxby _, +uv by . (6)
l' o’ o’ ,—,65 —— O
‘nybx'l'pyyby vua+vv-b—y

If we integrate (5) and (6) between the planes, the last terms in each
gives the conversion of energy of mean motion into energy of relative
motion and is the same except for sign. After substituting the value from
(1a) we have from (6)

ou
’ ‘uu’—‘+uv 1
fdedxdy——pffl_g’_‘ 2 duay

/I__

oy
| [(°“')’ )]
oy '
f f bv -%r dedy.
L
In order that the relative motion may not die out it is necessary that the
right-hand member of (7) be greater than or equal to zero, or

’
fde dudy = oIy — ul = 0, ®

where I, I, are the double integrals in equation (7). Hence,fvaluesfof.u',
v’ must exist for which I,/I;, must be = p/u for a minimum value. They
must also satisfy the continuity equations 0#’/dx + 0v’/dy = 0 and
the boundary conditions #’ = ' = 0 when y = =b.

)
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Assummg u = ég cos 2_1l'x- + (.%E sin 2.lx.
: ay ! dy !
v/ = 2r a sin 2z _ 2—”5 cos 2rx
1 l I T
where o = 8 = Z—‘; = j—‘: = 0, when y = =p, substituting for %’ and

v’ in I, I, and integrating over the length / in the x-direction we have

BREICE 5 dy)?;}dy | (8
L1 e G+ (]
(&) + G o ©

d 2y
From equation (3) we hav (ﬁ =u (b ) —p = (u ) Comparing
this with (2a) we see that in I; we may take

du 3U,

R T

since %'0’ is small. Equation (8) reduces to
_ 6wUnm "( da dﬁ)
L= [b Bay = %)Y
If turbulent motion is just possible then equation (8) may be written
G GG +@) ]
3 - 2 2 —_—
w fAG) o2 ) [(E) (@) ]+
d2 d2 2
(&) + G
; 2 2 =524, (9a)
WAG I
W\ T %ay)7Y

where K; = 2pbU,,/u and the function «, B, of y and the length [ are to be
determined so that A is a minimum.

K1=

[ MRV

R
I

a+ Y (— 1)*tta, cos ;;r_y'
1

Bo + i (—1)**1g,cos ?—zr—y,
1

Assuming

®
I
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which satisfy the boundary conditions if e — Y @, = Bo— 2, Bs = O.
1 1
Taking o; = B; = 0 for 2 > 2, substituting the values « and 8 in A we

have
2 (—") (4? + Py + b( ) [(B* + @) + (C* + RY)]

+2b(l—”) [( ) (B + Q) +( ) (cz+R2)]
+b[() @ +09+(2) @+ ®]

[2b(AQ BP) + 2b(AR — PC)+5)1’(CQ BR)]

N

»

where ag = Ay, a1 =B, s = C,fo=P,fi=Q, 6 =R
Putting 4 = B + Cand P = Q + R we have

2B+ o)+ 2@+ R +uBC+OR)
v (CQ — BR)

men =2 (5 +2 (Y G + ()] 2
wea[s() 42 (B () + ()] +-o(3)"

The conditions for a minimum value of A are

(BM+ Cp 4+ RvA =0
C)\2+Bﬂ—QVA=0
QX1+R‘£—CVA=0
(Rh: + Qu + BvA =0

A=

which have a solutlon prov1ded the determmant

)\1 M» 0 Av
m A —A¥ O
0 — Ay Xl 1"
AV 0 M Xz

= (M2 — p?2 + AH?)Z = 0.

Substituting the value of 7\1,')\2, u, v, from equations (9b) and minimizing
this expression with respect to ! we find K = 131.4. This is a value of
the criterion when only three terms are used in the series « and 8.
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If we take o; = 8; = Oforz > 3 we have

a—A+BcosT—-Ccos + D os3gy
B = P+QcosT—Rcosz1ry+S 3;:3’.

Substituting these values in A we arrive at a determinant of the 6th order.
This determinant is similar to that of the fourth order in the previous
calculation and is also a perfect square. In fact, it can be easily proven
that all succeeding determinants are perfect squares.

From the determinant of the 6th order we obtain a value for K; = 120.9
and from the 8th order K; = 118.5. Due to the mathematical computa-
tion involved this process becomes very laborious.

In the preceding work we expressed « and 8 by Fourier’s Series which
satisfied the boundary conditions exactly and determined conditions on
the coefficients which were necessary for a minimum value of A and so
found an approximate minimum for K;. We can also determine by Cal-
culus of Variations, differential equations which « and 8 must satisfy,
if they furnish a minimum value of A, solve these equations and deter-
mine the arbitrary constants so that the boundary conditions are satisfied.

Beginning with the expression for A in (9) by the ordinary process of
Calculus of Variations* we arrive at the differential equations,

2r\* 2r\*d%a | d*a| _ B
2[(7)a-2(—)¢1—y2+@:]- (3+2y )
27\* 2r\*d*B |, d*B da
2[(T>B 2(l>dy+ ] ("‘“yd)

Putting
1

a —

B —

A
—omye =k and y' =
2 (_") ]

2_’" y and omitting @) , we have

d2 d*a dg

+ = =—k1<ﬁ+23’ >
25 T o d 10

dy? ' dyt

Multiplying the second equation in (10) by ¢ adding it to the first and
replacing 7k by k, we have

D* = D*(a + i) = k(1 + 2yD)(a + B). (11)
This equation has four linearly independent solutions of the form

a+if=P+kQ+kR+ ..
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where P = cosh y, sinhy, y coshy or ysinhy. The general solution
contains four arbitrary complex constants. The boundary conditions which
the arbitrary constants must satisfy separate them into two sets one
corresponding to the solutions with P = cosh y and y sinh y, the other to
the solutions with P = sinh y and y cosh y. The former are found to
lead to a lower value of 2. Assuming a power series in y for « + 48 and
substituting in (11) we find with P = cosh y.

+(1+k) +(1+7k)y +(1+22k+9k’)y

(14 50% 4+ 109k’) + (1 + 95k + 583k* + 153k')

10!
a4+ ip = | (1+ 161k + 2097k2 4 2595k3)

12!

7y, -I- (1 + 252k + 6006k* +

16
19612k + 3825k4) ly—6' + (1 + 372k + 14574k? 4 97732k% +

y'8
- 82905k4) —— 1 8'
and with p = YSIBY
2
2,4-2y e+t 28k)y + (5 + 90k +
65k2) 10' + 6+ 220k + 606k’) EEY +(7+ 455k 3037k2+
a + ifs =
1365k3) + (8 + 840k 4 10968k2 + 17880k‘)
14! 16!
L o+ 1428k + 32094k% + 122468k* + 39585/3‘) 18’

where the coefficients are determined by the law
Appy — 2440 + {1 — (2n + DE}4, = 0.

Taking the solution a + 18 = (C, + 5Cs) (ar + iB1) + (Cs + 1Ci)(az + iB5),

a = Cia — Gp + Gz — Cif5;
B = GB1 + Ciay + CsBs + Ciae.

The arbitrary constants C;, Ce, Cs, C, must satisfy the conditions given by
a-—OB—O,ga—a’= ,gB ﬁ'=0wheny=glﬂ’-. Eliminating
Cl.: Cﬁ) C3) C41

then



388 MATHEMATICS: W.T. MACCREADIE Proc. N. A. S.

ay—PB az—f

The leftfhand member is of the form R? 4 S? where

a + i a + i

R+1iS = andR=S=0. (12)

oy + i a + if;
When the values of oy, a3, 81, B2, are substituted in (12) S'is fo@d to vanish
identically and R = 0 gives the following equation:

0=1+2 21" 4 8 83' ‘3 32y + (128 + 32k2) ya -+ (612 + 3008 2 24

(2048 + 2816k2) + (8192 + 215O4k2) -I- (32768 + 14:7456k2 +

13! 15!

15360k‘) + (131072 + 933888k* + 276480k4)

171 19'

where y = g;r—b We wish to determine the value of y which gives the least

4
valpe of Kl = g(

form

2
l

24,6
) b-"k We therefore assume a senes for 32:; 'y of the

A
;2+B+Cy2+D'y‘+Ey°.
Subétituting and detérmining the coefficients 4, B, C, D, E,:we find

.
82yt __ L °y°556 = 0.244949 — 0. 04020465y

9!
—0:001426054y* + 0.00010464y°.

which gives a minimum value of K = 116.84.

! Collected Papers, 2, p. 524. _

" 2 Transactions, Amer. Math. Soc., 1905.
3 Proc. Roy. Irishk Soc., 27, 1907.
4 Wilson, Advanced Calculus, p. 400.



